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Numerical Implementations of PML Boundary
Conditions in the TLM-Based SCN FDTD Grid

Jian Xu, Zhizhang Chen, and Jimmy Chuang

Abstract—The recently developed perfectly matched layer (PML)
absorbing scheme and its improvement, the modified PML (MPML), have
been shown to be very effective in absorbing numerical electromagnetic
(EM) waves in the conventional finite-difference time-domain (FDTD)
method. However, the implementation of PML in the transmission-line-
matrix (TLM) method is not straightforward. An alternative and easy way
is to use the recently introduced TLM-based symmetrical condensed node
(SCN) FDTD method. In this paper, the implementation of the PML and
MPML schemes in the TLM-based SCN FDTD method and the extension
of the MPML to three dimensions are presented. The computation amount
is found to increase by a maximum of 1/3, and the MPML is shown to be
effective and efficient in absorbing both the evanescent and propagating
modes.

Index Terms—Absorption, TLM-based finite-difference time-domain
(FDTD), perfectly matched layer (PML).

I. INTRODUCTION

Since the finite-difference time-domain (FDTD) method was in-
troduced in 1966 [1], different forms of the FDTD method have
been developed. One of the recently developed FDTD schemes is the
generalized TLM-based SCN FDTD method, which can be equiva-
lent to the three-dimensional (3-D)-transmission-line-matrix (TLM)
symmetrical condensed node (SCN) model [2]–[4] (the method was
then called the TLM-based FDTD). The main feature of the method
is that it is still a TLM-based technique, but formulated in an FDTD
fashion. As a result, it allows direct use of field quantities and
direct incorporation of full anisotropic media, while retaining certain
features of both the FDTD and TLM methods.

Like many other numerical techniques, in order to simulate infinite
space relevant to open structures, the FDTD methods need so-
called absorbing boundary conditions (ABC’s) to truncate an infinite
problem space to a finite computation domain without incurring very
large errors. Recently, an absorbing condition, the perfectly matched
layer (PML) ABC’s, was proposed [5]. By splitting Maxwell’s
equations and introducing both the electric and magnetic losses,
multiple anisotropic lossy layers have been constructed in such a
way that the intrinsic impedances between the layers are matched
while waves are attenuated as they propagate in the lossy PML
media. Theoretically, as well as experimentally, PML is found
to be able to effectively absorb both propagating and evanescent
regardless of the incident angles and frequencies [6], [7]. The further
enhancement of the PML’s ability in absorbing nonpropagating waves
without affecting the absorption for the propagating waves has lead
to a modified perfectly matched layer (MPML) for FDTD meshes
in the two-dimensional (2-D) case [8]. Preliminary results have
demonstrated that the MPML has a very good absorption of numerical
waves in the conventional 2-D FDTD grids of Yee’s scheme.

The TLM method is another powerful time-domain numerical
method introduced by Johns [9] for solving electromagnetic (EM)
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problems [10], [11]. In principle, the TLM is based on the analogy be-
tween the EM fields and voltage/currents in a mesh of interconnected
transmission lines. Therefore, all the field quantities to be simulated
have to be converted to the corresponding circuit parameters in terms
of voltage impulses. Although the conversion is not complicated
most of the times, it does pose certain difficulties or becomes
complicated in certain cases, e.g., simulation of nonlinear media. In
the case of implementation of the PML, the difficulty arises in how
to realize the split Maxwell’s equations in a TLM mesh. However, a
recently proposed FDTD method—the generalized TLM-based SCN
FDTD method as mentioned earlier, can circumvent this problem.
In this paper, the implementation of PML and MPML schemes in
the TLM-based SCN FDTD method, is described and numerical
experiments are performed. The results demonstrate the effectiveness
and efficiency of the MPML in the TLM-based SCN FDTD grid. In
addition, the extension of the MPML to three dimensions is derived.

In the Section II, the TLM-based SCN FDTD scheme is briefly
outlined. In Section III, the extension of MPML formulations to three
dimensions is described. In Section IV, the implementation of the
PML in the TLM-based SCN FDTD is detailed, while in Section V,
the numerical test results are demonstrated. Finally, in Section VI,
conclusions and a summary are presented.

II. THE TLM-BASED SCN FDTD

The details of the TLM-based SCN method is described in [4].
A brief description of the method is provided in the following
paragraphs.

In the new TLM-based SCN FDTD scheme, all the electric and
magnetic quantities are defined at the center of a cell while the tangen-
tial electric and magnetic fields are defined at the boundary surfaces of
the cell (Fig. 1). As a result, the continuities of the tangential electric
and magnetic fields across the interface of two neighboring cells
are automatically ensured. For a dielectric interface, no additional
conditions, such as the one used in [12], for the conventional FDTD
method need to be introduced. The field continuities are inherent in
the TLM-based SCN FDTD algorithm.

A. Update of Field Quantities at the Center of the 3-D Cell

With the new grid arrangements as shown in Fig. 1, the field
values at the center of a 3-D cell can be updated by directly finite-
differencing Maxwell’s equations. For example,
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Here,En� is approximated with(En+En�1)=2. �y and�z are
the space increments in they- andz-direction, respectively.�x is the
electric conductivity in thex-direction. The equations for the other
components can be obtained in a similar way or by permutating the
indexes.

From the above equations, the field quantities at the center of a
3-D cell can be found if the constitutive relationships of a medium,
DDD = DDD(EEE) andBBB = BBB(HHH), are known.
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Fig. 1. Grid arrangement for the TLM-based FDTD scheme.

B. Update of the Field Components at the Boundary Surfaces

For the field values at the boundary surfaces, a special averag-
ing process can be applied. For instance, at the boundary surface
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can be chosen as the free-space intrinsic impedance.

Note the above formulas resulting from the averaging process do
not change with the constitutive parameters, but remain the same
for anisotropic and nonlinear materials. In addition, it is noted that
the above averaging scheme has also been obtained by a process
involving characteristic decompositionof EM fields [13].

The equations for other components at the other boundary surface
of a 3-D cell can be obtained in a similar form or by permutating
the indexes.

III. MPML IN THREE DIMENSIONS

PML’s consists of multiple anisotropic layers with both electric
and magnetic losses, leading to the attenuation of a wave. A perfect
absorption can then, in theory, be obtained regardless of frequency
and incident angles. With the careful selection of electric- and
magnetic-loss spatial profiles and the careful implementation of the
PML scheme into a numerical grid, a high absorption has been
obtained experimentally for the conventional FDTD method [5], [6].

The further enhancement of the absorption of the evanescent modes
with the PML has led to the development of the MPML scheme
in two dimensions [8]. The main component of the MPML is the
introduction of the extra degrees of freedoms, so that the absorption

of evanescent energy can be controlled with these freedoms. The
numerical results have proven the effectiveness of the MPML in two
dimensions. The MPML was shown being placed in closer proximity
to the scatterers than the normal PML [8]. Again, careful selections of
spatial loss profiles are required in order to reduce reflections caused
by numerical dispersion.

To allow the computation of more realistic 3-D structures, MPML
formulations are extended to three dimensions in the following
paragraphs.

As was performed for the normal PML, Maxwell’s equations can
be divided into 12 equations. For example, one can have
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The other split equations can be obtained in a similar way.
Note here that in addition to the normal quantities�x, �y, �z , ��x,

��y , and��z , extra quantities�x, �y, �z , �x, �y, and�z are introduced
in the split equations in order to control the absorption of evanescent
energy. By following the procedure similar to that for two dimensions
[8], the match conditions can be derived as follows:
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�x = �x; �y = �y; �z = �z: (5b)

In other words, when the above conditions are satisfied, the-
oretically, the reflections between two neighboring MPML layers
are zero, regardless of incident angles and frequencies. In order to
achieve the minimum numerical reflections, the electric losses and the
permittivities need to be carefully chosen. For example, considering
the MPML layers, as shown in Fig. 2, one can use
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where� is the MPML thickness,�max

z is the maximum conductivity
which the PML can arise to, and(�max

z + 1) is the maximum
permittivity.

With the above conditions, if the MPML is terminated with a
conducting wall, the MPML reflection coefficient can be found as
follows:

Rz(�) = e
�2� �cos(�)=(n+1)� c

; for propagating modes

(7)

Rzen = e
�2� ksh(�)z

; for evescent modes (8)

wherec is the speed of light,k = !=c, and� is a real number and
larger than zero.

Equation (7) is the same as that for the PML. This means that
the introduction of extra freedoms does not change the absorbing
performance for propagating modes. However, as can be seen from
(8), the additional parameters,�z (and �z) increase the degree of
absorption of evanescent modes.
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Fig. 2. Return loss of TE31 mode in the WR28 waveguide with both ends
terminated with PML’s. The cutoff frequency is 76 GHz.

IV. I MPLEMENTATIONS OFMPML TO THE TLM-BASED SCN FDTD

The implementation is rather straightforward. The reason is that
in the TLM-based SCN FDTD grids, all six field components are
defined at the center of the 3-D cell, and Maxwell’s equations are
only applied in respect to the center of a cell. Consequently, only the
field components at the center of a 3-D cell need to be split, while
the field components at the boundary surfaces are not. They are still
computed via the averaging procedure involving the total fields at
the center of a 3-D cell. The averaging process is not affected by the
split of field components in the PML regions. In comparison with
the original computation, computation expenditure is only increased
by a maximum of 1/3.

By differencing (3a), (3b) and (4a), (4b), the MPML formulations
can easily be implemented in the TLM-based SCN FDTD. For
example, considering (3b), one has
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which can be rewritten as
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As seen, the field values at the cell center in a PML region can be
obtained from the values ofH-field and theE-field at the boundary
surfaces and at the previous time step. Since the field components

at the boundary surface are not split in a TLM-based SCN FDTD
grid, the only work in the implementation of the PML is to separately
computeHxz andHxy at the center of a cell [as indicated by (9)] and
then sum them together to get the totalHz . Therefore, implementation
of the PML (or MPML) in the TLM-based SCN FDTD grid is
relatively easy and convenient.

The PML equations for other components can be similarly con-
structed. Again, the process is straightforward.

Unlike the PML implementation so far in the conventional FDTD
grid where the last layer of a PML region is terminated with a con-
ducting wall (causing a total reflection at the end of a PML region),
a zero reflection coefficient (i.e.,E=H = free-space impedance) is
terminated in the PML region in the TLM-based SCN FDTD grid.
It is equivalent to terminating a PML region with a damping load,
resulting in a further dissipation of the energy in PML region. A
better absorption is then expected here, as opposed to terminating
with a conducting wall. As to the implementation of this zero
reflection coefficient in the TLM-based SCN FDTD scheme, it is
straightforward, since both the electric and magnetic fields are defined
at the boundary surfaces of a 3-D cell.

V. NUMERICAL RESULTS

Several cases are tested to ascertain the accuracy levels which are
associated with the PML in the TLM-based SCN FDTD grid. These
cases are: 1) a plane wave normally incident on the PML; 2) wave
propagation in a rectangular waveguide with both ends terminated
with PML’s; and 3) wave propagation in a microstrip line with the
open space simulated with the PML.

Case A: A Plane Wave Normally Incident onto a PML

A plane-wave propagation is the simplest wave one can use to
test the absorbing performance of an absorbing condition. Like the
3-D TLM symmetrical condensed node, the TLM-based SCN FDTD
shows no numerical dispersion in its axial direction in the free
space. Therefore, if a plane wave is launched along one of its
axial directions, no dispersion should be observed. When a PML
region is terminated, experiments show that the numerical reflection
is completely zero. In other words, PML or MPML have a perfect
absorption of a plane wave. Further studies indicate that this perfect
absorption does not changes with different loss profiles. This is due to
the fact that the plane wave, which is attenuated along its way toward
the end of a PML region, is finally absorbed by the zero reflection
wall placed at the end of the PML region. Although one may then
argue about the effectiveness of the PML, the PML does not produce
numerical reflections. In this sense, the properties of a discrete PML
are in good match with those of the TLM-based SCN FDTD grid.

Case B: A Dominant TE10 Mode in a Rectangular Waveguide

The second example for testing is a section of a WR28 waveguide
with both ends terminated with PML and MPML layers. The rect-
angular waveguide is chosen because waves inside the guide can be
considered as the superposition of many plane waves with different
incident angles, which are associated with the operating frequencies.
In addition, evanescent modes can be clearly identified by selecting
the operating frequency points below the cutoff frequencies. All of
this allows one to numerically evaluate the overall performance of
the PML in the TLM-based SCN FDTD grid.

The waveguide, which has a dimension of 7.112� 3.556 mm2,
is discretized into 28�l in width, 14�l in height, and 100�l in
length (�x = �y = �z = �l is chosen in this case). Six and 16
MPML and PML layers were placed at both ends of the waveguide,
respectively. The maximum electric loss was chosen as 1.24 for the
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Fig. 3. The electric fields at three different locations in the microstrip line
boxed by the MPML.

Fig. 4. Comparison of the effective dielectric constant as computed with
different methods. (a) Edward and Owen [14]. (b) Zhanget al. [12].

reflection coefficient equal to 10�6. The maximum dielectric constant
of the MPML was chosen as five.

Fig. 2 shows the return loss of the waveguide for the TE31 mode.
As can be seen, the return loss is below�80 dB for propagation
modes with both six and 16 PML or MPML layers. For the evanescent
modes, a better absorption for 16 MPML layers is achieved.

Case C: Wave Propagation in Microstrip Lines

Consider a microstrip structure which is boxed by PML layers.
The parameters used in computation are the same as those used in
[12]. A uniform excitation was imposed under the microstrip, and
waves were measured at two locations just below the microstrip. The
computation box is 22�l � 40 �l � 100�l, which includes ten
MPML layers in all three directions.

Fig. 3 shows the recorded time variations of the vertical electric
field under the microstrip at different positions along the propagation
direction (z = direction). Fig. 3 is the result calculated with MPML.
Fig. 4 shows the comparison of the effective dielectric constant
calculated with the PML, MPML, and other methods. It is obvious
that the curve representing the results with the MPML is smooth (and,
therefore, more accurate), while the curve for the PML shows some
degree of oscillation. The reason is that the MPML is more effective
in absorbing the evanescent energy as explained earlier and shown
in the waveguide case. In general, the MPML and PML results agree

well. However, both of them are a bit lower than the result obtained
with the empirical model [14], but higher than the values presented
in [12] with the conventional FDTD method (which uses a simple
absorbing condition). Therefore, one can say that the TLM-based
SCN FDTD method with the MPML does present accurate solutions
to inhomogeneous structures.

VI. CONCLUSIONS

In this paper, the extension of the MPML to three dimensions, and
the implementation of the MPML in the TLM-based SCN FDTD
method have been presented. It is found that the implementation
of the PML or MPML in the TLM-based SCN FDTD grid is
relatively easy and straightforward, and the computation expenditures
for PML calculations are only increased by a maximum of 1/3. This is
attributed to the capability of the TLM-based SCN FDTD method in
defining all the field components at grid points, and in easy treatments
of the anisotropic media, as pointed out in [3]. In addition, due to the
fact that both electric and magnetic fields are defined at grid points,
additional treatments at the dielectric-air interface are not required. In
conclusion, the PML and MPML have been implemented in the TLM-
based SCN FDTD scheme and have been shown to be effective in
absorbing both propagating and evanescent energy. Numerical results
are in good agreement with either theoretical predictions or with
results obtained from other techniques.

Finally, it is worth mentioning that unsplit PML formulations have
been recently proposed [15]. They have been shown as effective as
the original PML while saving memory and control processing unit
(CPU) time. The implementation of the unsplit PML schemes in
the TLM-based FDTD method should be both straightforward and
easy. However, the main objective of this paper is to numerically
validate the applicability and effectiveness of the PML scheme in the
TLM-based SCN FDTD grid.
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Hybrid FDTD Large-Signal Modeling
of Three-Terminal Active Devices

Qiang Chen and V. F. Fusco

Abstract—A general algorithm for including large-signal active three-
terminal models into the finite-difference time-domain (FDTD) method
is presented. A dynamic interface between the active device and the
FDTD lattice is used to simulate the prominent nonlinear time-dependant
behavior of the three-terminal active device, which is connected across
multiple FDTD cells. A technique for introducing an internal electromag-
netic (EM) field absorber into the FDTD three-terminal active device
model in order to eliminate undesired current coupling is discussed.
Numerical comparison shows this method is accurate and expected to
have general utility for other complicated hybrid lumped-circuit FDTD
modeling situations.

Index Terms—Active devices, finite-difference time-domain method,
large-signal models.

I. INTRODUCTION

Lumped-element modeling is a very important aspect for the future
development and application of the finite-difference time-domain
(FDTD) method [1]–[7]. It is well accepted that a lumped element
can be represented by lumped-current(s) in the FDTD algorithm.
To accurately represent a general lumped-element case, this lumped-
current should satisfy two requirements.

1) It should be connected across multiple, rather than (as at
present) single, FDTD cells so that an arbitrarily sized lumped
element can be modeled.

2) A dynamic interface between the FDTD electromagnetic (EM)
fields and the lumped element’sI–V behavior (i.e., the lumped-
current) should be calculated using the present, rather than the
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Fig. 1. Interface region between FDTD solver field and three-terminal device
model.

former, time-step of the discretized EM field in such a way that
the obtained lumped-current is correct for both the FDTD EM-
field computation and the lumped-elementI–V characteristic at
any given time-step.

The first above-mentioned requirement was recently addressed by
Durneyet al. [5] and the second by Piket-Mayet al. [6], where a semi-
implicit average of present and former time-step values was used.
However, due to numerical complexities involved, these two aspects
have not been accounted for concurrently. The parametric technique
[7] is an attempt to take these two requirements simultaneously into
account. The technique is simple and accurate for simple lumped-
elements, i.e., a resistor, a capacitor, a diode, etc. However, for
complicated lumped-element circuits, it is difficult to simulate their
behavior by the method of media parameters variation. In this paper,
an FET connected across a unilaterally gapped slotline (Fig. 1)
is taken as an example of a general method for lumped-element
modeling. Since the FET large-signal model is indeed a complex
three-terminal nonlinear lumped-element circuit containing passive,
source, and control elements, the method presented here is expected
to be useful for any other lumped-element/circuit models. In addition,
in this paper, the decoupling between the lumped gate current and
lumped drain current in the FET FDTD model is discussed.

II. I NTERFACE BETWEEN SLOTLINE FIELD AND FET MODEL

Table I shows the parameters of a general packaged large-signal
FET model,1 [8] customized for the NE72089 device to be included
into the FDTD algorithm. Its nonlinear port (source and drain)
currents can be calculated by time-domain analysis by solving a
set of differential equations provided the port voltages are known.
Thus, the obtained lumped currents are then used in the FDTD
algorithm for the interaction of FDTD EM fields and the FET
behavior. Fig. 1 shows the port voltages and port currents as an
interface between the distributed fields and the FET model in the
slotline example. The unilateral slotline gap between the source and
drain of the FET is for dc bias. From the figure, it can be seen
that dc-bias voltages are applied and simulated directly in the FET
model. Thus, only signal fields (with no dc bias) are analyzed by the
FDTD method in the slotline. This simplifies the FDTD simulation
and gives an advantage for any further circuit simulation using the
hybrid field. For the simulation of other circuits with a high level

1HP 85150B Microwave and RF Design Systems,Microwave Library
Components (Lumped, Ideal, & Nonlinear), ch. 17, vol. 4, Component Catalog,
Hewlett-Packard Company, 1994.
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